27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Abstract

General Description The MAX9248/MAX9250 digital video serial-to-parallel converters deserialize a total of 27 bits during data and control phases. In the data phase, the LVDS serial input is converted to 18 bits of parallel video data and in the control phase, the input is converted to 9 bits of parallel control data. The separate video and control phases take advantage of video timing to reduce the serial-data rate. The MAX9248/MAX9250 pair with the MAX9247 serializer to form a complete digital video transmission system. For operating frequencies less than 35 MHz , the MAX9248/ MAX9250 can also pair with the MAX9217 serializer. The MAX9248 features spread-spectrum capability, allowing output data and clock to spread over a specified frequency range to reduce EMI. The data and clock outputs are programmable for a spectrum spread of $\pm 4 \%$ or $\pm 2 \%$. The MAX9250 features output enable input control to allow data busing. Proprietary data decoding reduces EMI and provides DC balance. The DC balance allows AC-coupling, providing isolation between the transmitting and receiving ends of the interface. The MAX9248/MAX9250 feature a selectable rising or falling output latch edge. ESD tolerance is specified for ISO 10605 with $\pm 10 \mathrm{kV}$ Contact Discharge and $\pm 30 \mathrm{kV}$ Air-Gap Discharge. The MAX9248/MAX9250 operate from a $+3.3 \mathrm{~V} \pm 10 \%$ core supply and feature a separate output supply for interfacing to 1.8 V to 3.3 V logic-level inputs. These devices are available in a 48-lead LQFP package and are specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Applications

Navigation System Displays
In-Vehicle Entertainment Systems
Video Cameras
LCD Displays
Programmable $\pm 4 \%$ or $\pm 2 \%$ Spread-Spectrum
Output for Reduced EMI (MAX9248)
Proprietary Data Decoding for DC Balance and
Reduced EMI
Control Data Deserialized During Video Blanking
Five Control Data Inputs are Single-Bit-Error
Tolerant
Output Transition Time is Scaled to Operating
Frequency for Reduced EMI
Staggered Output Switching Reduces EMI
Output Enable Allows Busing of Outputs
(MAX9250)
Clock Pulse Stretch on Lock
Wide $\pm 2 \%$ Reference Clock Tolerance
Synchronizes to MAX9247 Serializer Without
ISO 10605 and IEC $61000-4-2$ Level 4
ESD Protection
Separate Output Supply Allows Interface to 1.8V
to 3.3V Logic
+3.3V Core Power Supply
Space-Saving LQFP Package
-40ㄷ to +85ㄷ and $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operating
Temperature Ranges

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9248ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9248GCM +	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	48 LQFP
MAX9250ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9250GCM +	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	48 LQFP

+Denotes a lead-free/RoHS-compliant package.

Pin Configuration appears at end of data sheet.

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

ABSOLUTE MAXIMUM RATINGS

VCC_ to _GND..-0.5V to +4.0V Any Ground to Any Ground.................................... -0.5 V to +0.5 V IN+, IN- to LVDSGND... . -0.5 V to +4.0 V IN+, IN- Short Circuit to LVDSGND or VCCLVDSContinuous (R/F, OUTEN, RNG_, REFCLK, SS PWRDWN) to GND. (RGB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT, LOCK) to VCCOGND-0.5V to (VCCO +0.5 V) Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 48-Lead LQFP (derate $21.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 1739 mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}_{-}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \overline{\text { PWRDWN }}=$ high, differential input voltage $|\mathrm{VID}|=0.05 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{VCM}=|\mathrm{VID} / 2|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP MAX	UNITS
SINGLE-ENDED INPUTS (R/̄, OUTEN, RNG0, RNG1, REFCLK, PWRDWN, SS)						
High-Level Input Voltage	$\mathrm{V}_{\text {IH }}$			2.0	$\mathrm{V}_{\text {CC }}+0.3$	V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$			-0.3	+0.8	V
Input Current	IIN	$\overline{\text { PWRDWN }}=$ high or low	$\begin{aligned} & \text { VIN }=-0.3 \mathrm{~V} \text { to } 0 \text { (MAX9248/ } \\ & \text { MAX9250ECM), } \\ & \text { VIN }=-0.15 \mathrm{~V} \text { to } 0 \text { (MAX9248/ } \\ & \text { MAX9250GCM), } \end{aligned}$	-100	+20	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0$ to (V CC +0.3 V)	-20	+20	
Input Clamp Voltage	$\mathrm{V}_{C L}$	ICL $=-18 \mathrm{~mA}$			-1.5	V
SINGLE-ENDED OUTPUTS (RGB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT, $\overline{\text { LOCK }}$)						
High-Level Output Voltage	VOH	$\mathrm{IOH}=-100 \mu \mathrm{~A}$		VCCO-0.1		V
		$\mathrm{IOH}=-2 \mathrm{~mA}$, RNG1 $=$ high		VCCO - 0.35		
		$\mathrm{IOH}=-2 \mathrm{~mA}, \mathrm{RNG1}=$ low		V ${ }_{\text {cco }}-0.4$		
Low-Level Output Voltage	VOL	$\mathrm{IOL}=100 \mu \mathrm{~A}$		0.10.30.35		V
		$\mathrm{IOL}=2 \mathrm{~mA}, \mathrm{RNG1}=$ high				
		$\mathrm{IOL}=2 \mathrm{~mA}, \mathrm{RNG1}=\mathrm{low}$		0.35		
High-Impedance Output Current	Ioz	$\overline{\text { PWRDWN }}=$ $V_{O}=-0.3 \mathrm{~V} \text { to }$	$\begin{aligned} & \text { low or OUTEN = low, } \\ & \left(V_{C C O}+0.3 V\right) \end{aligned}$	-10	+10	$\mu \mathrm{A}$
Output Short-Circuit Current	Ios	RNG1 = high, $\mathrm{V}_{\mathrm{O}}=0$		-10	-50	mA
		RNG1 = low, $\mathrm{V}_{\mathrm{O}}=0$		-7	-40	

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

DC ELECTRICAL CHARACTERISTICS (continued)

(VCC_ $=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \overline{\mathrm{PWRDWN}}=$ high, differential input voltage $|\mathrm{VID}|=0.05 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=|\mathrm{VID} / 2|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
LVDS INPUT (IN+, IN-)								
Differential Input High Threshold	$V_{\text {TH }}$	(Note 3)					50	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$	(Note 3)			-50			mV
Input Current	$\mathrm{IIN+}, \mathrm{l}$ IN-	$\overline{\text { PWRDWN }}=$ high or low (Note 3)			-40		+40	$\mu \mathrm{A}$
Input Bias Resistor (Note 3)	RIB	$\overline{\text { PWRDWN }}=$ high or low	MAX9248/MAX9250ECM		42	60	78	k Ω
			MAX9248/MAX9250GCM		42	60	88	
		VCC_= 0 or open, $\overline{\text { PWRDWN }}=$ 0 or open, Figure 1	MAX9248/MAX9250ECM		42	60	78	
			MAX9248/MAX9250GCM		42	60	88	
Power-Off Input Current	IINO+, İNO-	$V_{C C}=0$ or open, $\overline{\text { PWRDWN }}=0$ or open (Note 3)			-60		+60	$\mu \mathrm{A}$
POWER SUPPLY								
Worst-Case Supply Current		MAX9250 $C L=8 p F$, worst-case pattern, Figure 2	$\begin{aligned} & \text { RNG1 }=\text { low } \\ & \text { RNGO }=\text { low } \end{aligned}$	2.5 MHz			19	mA
				5 MHz			33	
			$\begin{aligned} & \text { RNG1 }=\text { low } \\ & \text { RNGO }=\text { high } \end{aligned}$	5 MHz			28	
				10 MHz			49	
			$\begin{aligned} & \text { RNG1 }=\text { high } \\ & \text { RNGO }=\text { low } \end{aligned}$	10 MHz			33	
				20 MHz			59	
			$\begin{aligned} & \text { RNG1 }=\text { high } \\ & \text { RNG0 }=\text { high } \end{aligned}$	20 MHz			45	
				42 MHz			89	
		MAX9248 $C L=8 p F$, worst-case pattern, Figure 2	$\begin{aligned} & \text { RNG1 = low } \\ & \text { RNG0 }=\text { low } \end{aligned}$	2.5 MHz			31	
				5 MHz			48	
			$\begin{aligned} & \text { RNG1 }=\text { low } \\ & \text { RNGO }=\text { high } \end{aligned}$	5 MHz			40	
				10MHz			70	
			$\begin{aligned} & \text { RNG1 = high } \\ & \text { RNG0 }=\text { low } \end{aligned}$	10 MHz			49	
				20 MHz			87	
			$\begin{aligned} & \text { RNG1 = high } \\ & \text { RNG0 = high } \end{aligned}$	20MHz			68	
				35 MHz			100	
				42 MHz			120	
Power-Down Supply Current	Iccz	(Note 4)					50	$\mu \mathrm{A}$

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}, \overline{\mathrm{PWRDWN}}=$ high, differential input voltage $\left|\mathrm{V}_{\mathrm{ID}}\right|=0.1 \mathrm{~V}$ to 1.2 V , input common-mode voltage $V_{C M}=\left|V_{I D} / 2\right|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{\text {ID }} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\text {ID }}\right|=0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Notes 3, 5)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
REFCLK TIMING REQUIREMENTS								
Period	t \dagger	MAX9248/MAX9250ECM			23.8		400.0	ns
		MAX9248/MAX9250GCM			28.6		400.0	
Frequency	fCLK	MAX9248/MAX9250ECM			2.5		42.0	MHz
		MAX9248/MAX9250GCM			2.5		35.0	
Frequency Variation	$\Delta \mathrm{f}$ CLK	REFCLK to serializer PCLK_IN			-2.0		+2.0	\%
Duty Cycle	DC				40	50	60	\%
Transition Time	ttran	20\% to 80\%					6	ns
SWITCHING CHARACTERISTICS								
Output Rise Time	tR	Figure 3	RNG1 = high	MAX9248/ MAX9250ECM	2.2		4.6	ns
				MAX9248/ MAX9250GCM	2.2		4.9	
			RNG1 = low	MAX9248/ MAX9250ECM	2.8		5.2	
				MAX9248/ MAX9250GCM	2.8		6.1	
Output Fall Time	tR	Figure 3	RNG1 = high	MAX9248/ MAX9250ECM	1.9		4.0	ns
			RNG1 = low	MAX9248/ MAX9250ECM	2.3		4.3	
				MAX9248/ MAX9250GCM	2.3		5.2	
PCLK_OUT High Time	thigh	Figure 4			$\begin{gathered} 0.4 x \\ t T \end{gathered}$		$\begin{gathered} 0.6 x \\ t T \end{gathered}$	ns
PCLK_OUT Low Time	tıow	Figure 4			$\begin{gathered} 0.4 \mathrm{x} \\ \mathrm{t} T \end{gathered}$	$\begin{gathered} 0.45 x \\ \text { tT } \end{gathered}$	$\begin{gathered} 0.6 x \\ t_{T} \end{gathered}$	ns
Data Valid Before PCLK_OUT	tDVB	Figure 5			$0.35 \times \mathrm{t}$	$0.4 \times$ t ${ }^{\text {T }}$		ns
Data Valid After PCLK_OUT	tDVA	Figure 5			$0.35 \times$ t	$0.4 \times$ t		ns
PLL Lock to REFCLK	tPLLREF	MAX9248, Figure 8						ns
		MAX9250, Figure 7			$16,928 \times \text { tт }$			
Spread-Spectrum Output Frequency (MAX9248)	fPCLK_OUT	SS = high Figure 11	Maximum frequenc	output y	$\begin{aligned} & \text { fREFCLK } \\ & +3.6 \% \end{aligned}$	$\begin{aligned} & \text { fREFCLK } \\ & +4.0 \% \end{aligned}$	freFCLK $+4.4 \%$	MHz
			Minimum frequenc	output y	$\begin{aligned} & \text { fREFCLK } \\ & -4.4 \% \end{aligned}$	$\begin{gathered} \text { fREFCLK } \\ -4.0 \% \end{gathered}$	$\begin{gathered} \text { fREFCLK } \\ -3.6 \% \end{gathered}$	
		SS = low, Figure 11	Maximum frequenc	output y	$\begin{aligned} & \text { fREFCLK } \\ & +1.8 \% \end{aligned}$	$\begin{aligned} & \text { fREFCLK } \\ & +2.0 \% \end{aligned}$	$\begin{aligned} & \text { fREFCLK } \\ & +2.2 \% \end{aligned}$	
			Minimum frequenc	output y	$\begin{gathered} \text { fREFCLK } \\ -2.2 \% \end{gathered}$	fREFCLK -2.0%	freFCLK - 1.8\%	

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}-=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{CL}_{-}=8 \mathrm{pF}, \overline{\mathrm{PWRDWN}}=$ high, differential input voltage $\left|\mathrm{V}_{\mathrm{ID}}\right|=0.1 \mathrm{~V}$ to 1.2 V , input common-mode voltage $V_{C M}=\left|V_{I D} / 2\right|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{\text {ID }} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3, 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Spread-Spectrum Modulation Frequency	fssm	Figure 11		$\begin{gathered} \text { fREFCLK / } \\ 1024 \end{gathered}$	kHz
Power-Down Delay	tPDD	Figures 7, 8		100	ns
SS Change Delay	tıSSPLL	MAX9248, Figure 17		$\begin{gathered} \hline 32,800 \\ \times \mathrm{tT} \\ \hline \end{gathered}$	ns
Output Enable Time	toe	MAX9250, Figure 8		1030	ns
Output Disable Time	toz	MAX9250, Figure 9		$10 \quad 30$	ns

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except $V_{T H}$ and $V_{T L}$.
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: Parameters are guaranteed by design and characterization, and are not production tested. Limits are set at ± 6 sigma.
Note 4: All LVTTL/LVCMOS inputs, except $\overline{\text { PWRDWN }}$ at $\leq 0.3 \mathrm{~V}$ or $\geq \mathrm{VCC}_{\mathrm{C}}-0.3 \mathrm{~V}$. $\overline{\text { PWRDWN }}$ is $\leq 0.3 \mathrm{~V}$, REFCLK is static.
Note 5: CL includes probe and test jig capacitance.

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

$\left(\mathrm{V}_{\mathrm{CC}}-=+3.3 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=8 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

OUTPUT POWER SPECTRUM vS. FREQUENCY (REFCLK $=42 \mathrm{MHz}$, NO SPREAD,

4\%, AND 2\%'SPREAD)

OUTPUT TRANSITION TIME
vs. OUTPUT SUPPLY VOLTAGE (VCco)

BIT-ERROR RATE vs. CABLE LENGTH

OUTPUT TRANSITION TIME
vs. OUTPUT SUPPLY VOLTAGE (Vcco)

CABLE LENGTH vs. FREQUENCY BIT-ERROR RATE $<\mathbf{1 0}^{-9}$

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Pin Description

PIN		NAME	FUNCTION
MAX9248	MAX9250		
1	1	$\mathrm{R} / \overline{\mathrm{F}}$	Rising or Falling Latch Edge Select. LVTTL/LVCMOS input. Selects the edge of PCLK_OUT for latching data into the next chip. Set $R / \bar{F}=$ high for a rising latch edge. Set $R \bar{F}=$ low for a falling latch edge. Internally pulled down to GND.
2	2	RNG1	LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel clock input frequency. Internally pulled down to GND.
3	3	VCCLVDS	LVDS Supply Voltage. Bypass to LVDSGND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
4	4	$\mathrm{IN}+$	Noninverting LVDS Serial-Data Input
5	5	IN-	Inverting LVDS Serial-Data Input
6	6	LVDSGND	LVDS Supply Ground
7	7	PLLGND	PLL Supply Ground
8	8	$V_{\text {CCPLL }}$	PLL Supply Voltage. Bypass to PLLGND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible with the smallest value capacitor closest to the supply pin.
9	9	RNGO	LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel clock input frequency. Internal pulldown to GND.
10	10	GND	Digital Supply Ground
11	11	VCC	Digital Supply Voltage. Supply for LVTTL/LVCMOS inputs and digital circuits. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible with the smallest value capacitor closest to the supply pin.
12	12	REFCLK	LVTTL/LVCMOS Reference Clock Input. Apply a reference clock that is within $\pm 2 \%$ of the serializer PCLK_IN frequency. Internally pulled down to GND.
13	13	PWRDWN	LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND.
14	-	SS	LVTTL/LVCMOS Spread-Spectrum Input. SS selects the frequency spread of PCLK_OUT and output data relative to PCLK_IN. Drive SS high for 4\% spread and pull low for 2\% spread.
15-23	15-23	CNTL_OUTOCNTL_OUT8	LVTTL/LVCMOS Control Data Outputs. CNTL_OUT[8:0] are latched into the next chip on the rising or falling edge of PCLK_OUT as selected by R/ \bar{F} when DE_OUT is low, and are held at the last state when DE_OUT is high.
24	24	DE_OUT	LVTTL/LVCMOS Data-Enable Output. High indicates RGB_OUT[17:0] are active. Low indicates CNTL_OUT[8:0] are active.
25, 37	25,37	VCCOGND	Output Supply Ground
26, 38	26, 38	Vcco	Output Supply Voltage. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible with the smallest value capacitor closest to the supply pin.

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Pin Description (continued)

PIN		NAME	FUNCTION
MAX9248	MAX9250		
27	27	$\overline{\text { LOCK }}$	LVTTL/LVCMOS Lock Indicator Output. Outputs are valid when $\overline{\text { LOCK }}$ is low.
28	28	PCLK_OUT	LVTTL/LVCMOS Parallel Clock Output. Latches data into the next chip on the edge selected by R/ $\overline{\mathrm{F}}$.
$\begin{aligned} & 29-36, \\ & 39-48 \end{aligned}$	$\begin{aligned} & 29-36, \\ & 39-48 \end{aligned}$	RGB_OUTORBG_OUT7, RGB_OUT8RGB_OUT17	LVTTL/LVCMOS Red, Green, and Blue Digital Video Data Outputs. RGB_OUT[17:0] are latched into the next chip on the edge of PCLK_OUT selected by R/F when DE_OUT is high, and are held at the last state when DE_OUT is low.
-	14	OUTEN	LVTTL/LVCMOS Output Enable Input. High activates the single-ended outputs. Driving low places the single-ended outputs in high impedance except $\overline{\text { LOCK. Internally pulled }}$ down to GND.

Functional Diagram

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 1. LVDS Input Bias

Figure 3. Output Rise and Fall Times

Figure 2. Worst-Case Output Pattern

Figure 4. High and Low Times

Figure 5. Synchronous Output Timing

Figure 6. Deserializer Delay

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 7. PLL Lock to REFCLK and Power-Down Delay for MAX9250

Figure 8. PLL Lock to REFCLK and Power-Down Delay for MAX9248

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 9. Output Enable Time

Figure 11. Simplified Modulation Profile

Figure 10. Output Disable Time

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

___Detailed Description
The MAX9248/MAX9250 DC-balanced deserializers operate at a 2.5 MHz -to- 42 MHz parallel clock frequency, deserializing video data to the RGB_OUT[17:0] outputs when the data-enable output DE_OUT is high, or control data to the CNTL_OUT[8:0] outputs when DE_OUT is low. The outputs on the MAX9248 are programmable for $\pm 2 \%$ or $\pm 4 \%$ spread relative to the LVDS input clock frequency, while the MAX9250 has no spread, but has an output-enable input that allows output busing. The video phase words are decoded using two overhead bits, EN0 and EN1. Control phase words are decoded with one overhead bit, ENO. Encoding, performed by the MAX9247 serializer, reduces EMI and maintains DC balance across the serial cable. The seri-al-input word formats are shown in Tables 1 and 2.
Control data inputs C0 to C4, each repeated over three serial bit times by the serializer, are decoded using majority voting. Two or three bits at the same state determine the state of the recovered bit, providing single bit-error tolerance for C0 to C4. The state of C5 to C8 is determined by the level of the bit itself (no voting is used).

AC-Coupling Benefits

AC-coupling increases the input voltage of the LVDS receiver to the voltage rating of the capacitor. Two capacitors are sufficient for isolation, but four capaci-tors-two at the serializer output and two at the deserializer input-provide protection if either end of the cable is shorted to a high voltage. AC-coupling blocks low-frequency ground shifts and common-mode noise.

The MAX9247 serializer can also be DC-coupled to the MAX9248/MAX9250 deserializers. Figures 12 and 14 show the AC-coupled serializer and deserializer with two capacitors per link, and Figures 13 and 15 show the AC-coupled serializer and deserializer with four capacitors per link.

Applications Information

Selection of AC-Coupling Capacitors

See Figure 16 for calculating the capacitor values for AC-coupling depending on the parallel clock frequency. The plot shows capacitor values for two- and four-capacitor-per-link systems. For applications using less than 18 MHz clock frequency, use $0.1 \mu \mathrm{~F}$ capacitors.

Termination and Input Bias

The IN+ and IN- LVDS inputs are internally connected to +1.2 V through $42 \mathrm{k} \Omega(\mathrm{min})$ to provide biasing for ACcoupling (Figure 1). Assuming 100Ω interconnect, the LVDS input can be terminated with a 100Ω resistor. Match the termination to the differential impedance of the interconnect.
Use a Thevenin termination, providing 1.2 V bias, on an AC-coupled link in noisy environments. For interconnect with 100Ω differential impedance, pull each LVDS line up to VCc with 130Ω and down to ground with 82Ω at the deserializer input (Figures 12 and 15). This termination provides both differential and common-mode termination. The impedance of the Thevenin termination should be half the differential impedance of the interconnect and provide a bias voltage of 1.2 V .

Table 1. Serial Video Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	EN1	S 0	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10	S 11	S 12	S 13	S 14	S 15	S 16	S 17

Bit 0 is the LSB and is deserialized first. EN[1:0] are encoding bits. S[17:0] are encoded symbols.

Table 2. Serial Control Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	C 0	C 0	C 0	C 1	C 1	C 1	C 2	C 2	C 2	C 3	C 3	C 3	C 4	C 4	C 4	C 5	C 6	C 7	C 8

Bit 0 is the LSB and is deserialized first. C[8:0] are the mapped control inputs.

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

MAX9248/MAX9250

Figure 12. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Two Capacitors per Link

Figure 13. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Four Capacitors per Link

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 14. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Two Capacitors per Link

Figure 15. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Four Capacitors per Link

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Abstract

Input Frequency Detection A frequency-detection circuit detects when the LVDS input is not switching. When not switching, all outputs except $\overline{\text { LOCK }}$ are low, $\overline{\text { LOCK }}$ is high, and PCLK_OUT follows REFCLK. This condition occurs, for example, if the serializer is not driving the interconnect or if the interconnect is open.

Frequency Range Setting (RNG[1:0])

The RNG[1:0] inputs select the operating frequency range of the MAX9248/MAX9250 and the transition time of the outputs. Select the frequency range that includes the MAX9247 serializer PCLK_IN frequency. Table 3 shows the selectable frequency ranges and the corresponding data rates and output transition times.

Table 3. Frequency Range Programming

RNG1	RNGO	PARALLEL CLOCK (MHz)	SERIAL- DATA RATE (Mbps)	OUTPUT TRANSITION TIME
0	0	2.5 to 5.0	50 to 100	Slow
0	1	5 to 10	100 to 200	
1	0	10 to 20	200 to 400	Fast
1	1	20 to 42	400 to 840	

Power Down
Driving $\overline{\text { PWRDWN }}$ low puts the outputs in high impedance and stops the PLL. With PWRDWN $\leq 0.3 \mathrm{~V}$ and all LVTTL/LVCMOS inputs $\leq 0.3 \mathrm{~V}$ or $\geq \mathrm{VCC}-0.3 \mathrm{~V}$, the supply current is reduced to less than $50 \mu \mathrm{~A}$. Driving PWRDWN high initiates lock to the local reference clock (REFCLK) and afterwards to the serial input.

Lock and Loss-of-Lock ($\overline{\text { LOCK }}$)
When $\overline{\text { PWRDWN }}$ is driven high, the PLL begins locking to REFCLK, drives $\overline{\text { LOCK }}$ from high impedance to high and the other outputs from high impedance to low, except PCLK_OUT. PCLK_OUT outputs REFCLK while the PLL is locking to REFCLK. Lock to REFCLK takes a maximum of 16,928 REFCLK cycles for the MAX9250. The MAX9248 has an additional spread-spectrum PLL (SSPLL) that also begins locking to REFCLK. Locking both PLLs to REFCLK takes a maximum of 33,600 REFCLK cycles for the MAX9248.

Figure 16. AC-Coupling Capacitor Values vs. Clock Frequency of 18 MHz to 42 MHz

When the MAX9248/MAX9250 complete their lock to REFCLK, the serial input is monitored for a transition word. When a transition word is found, LOCK output is driven low, indicating valid output data and the parallel rate clock recovered from the serial input is output on PCLK_OUT. The MAX9248 SSPLL waits an additional 288 clock cycles after the transition word is found before LOCK is driven low and sequence takes effect. PCLK_OUT is stretched on the change from REFCLK to recovered clock (or vice versa) at the time when the transition word is found.
If a transition word is not detected within 2^{22} cycles of PCLK_OUT, LOCK is driven high, the other outputs except PCLK_OUT are driven low. REFCLK is output on PCLK_OUT and the deserializer continues monitoring the serial input for a transition word. See Figure 7 for the MAX9250 and Figure 8 for the MAX9248 regarding the synchronization timing diagram.
The MAX9248 input-to-output delay can be as low as $(4.5 \mathrm{t}$ t +8.0$) \mathrm{ns}$ or as high as $(36 \mathrm{tT}+16) \mathrm{ns}$ due to spread-spectrum variations (see Figure 6).
The MAX9250 input-to-output delay can be as low as $(3.575 \mathrm{tt}+8) \mathrm{ns}$ or as high as (3.725tt + 16) ns.

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Spread-Spectrum Selection

The MAX9248 single-ended data and clock outputs are programmable for a variation of $\pm 2 \%$ or $\pm 4 \%$ around the LVDS input clock frequency. The modulation rate of the frequency variation is 32 kHz for a 33 MHz LVDS clock input and scales linearly with the clock frequency (see Table 4). The output spread is controlled through the SS input (see Table 5). Driving SS high spreads all data and clock outputs by $\pm 4 \%$, while pulling low spreads $\pm 2 \%$.

Table 4. Modulation Rate

fPCLK_IN	$\mathbf{f M}_{\mathbf{M}(\mathbf{k H z})=\mathbf{f P C L K _ \mathbf { I N }} / \mathbf{1 0 2 4}} \mathbf{\| 8}$
10	9.81
16	15.63
32	31.25
40	39.06
42	41.01

Table 5. SS Function

SS INPUT LEVEL	OUTPUT SPREAD
High	Data and clock output spread $\pm 4 \%$ relative to REFCLK
Low	Data and clock output spread $\pm 2 \%$ relative to REFCLK

Any spread change causes a delay time of 32,000 \times t before output data is valid. When the spread amount is changed from $\pm 2 \%$ to $\pm 4 \%$ or vice versa, the data outputs go low for one $t_{\Delta S S P L L}$ delay (see Figure 17). The data outputs stay low, but are not valid when the spread amount is changed.

Output Enable (OUTEN) and

 Busing OutputsThe outputs of two MAX9250s can be bused to form a 2:1 mux with the outputs controlled by the output enable. Wait 30ns between disabling one deserializer (driving OUTEN low) and enabling the second one (driving OUTEN high) to avoid contention of the bused outputs. OUTEN controls all outputs except $\overline{\text { LOCK. }}$

Rising or Falling Output Latch Edge (R/F) The MAX9248/MAX9250 have a selectable rising or falling output latch edge through a logic setting on $\mathrm{R} / \overline{\mathrm{F}}$. Driving R/F high selects the rising output latch edge, which latches the parallel output data into the next chip on the rising edge of PCLK_OUT. Driving R/F low selects the falling output latch edge, which latches the parallel output data into the next chip on the falling edge of PCLK_OUT. The MAX9248/MAX9250 output-latch-edge polarity does not need to match the MAX9247 serializer input-latch-edge polarity. Select the latch-edge polarity required by the chip being driven by the MAX9248/MAX9250.

Figure 17. Output Waveforms when Spread Amount is Changed

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 18. Output Timing

Staggered and Transition Time Adjusted Outputs

RGB_OUT[17:0] are grouped into three groups of six, with each group switching about 1ns apart in the video phase to reduce EMI and ground bounce. CNTL_OUT[8:0] switch during the control phase. Output transition times are slower in the 2.5 MHz to 5 MHz and 5 MHz to 10 MHz ranges and faster in the 10 MHz to 20 MHz and 20 MHz to 42 MHz ranges.

Data-Enable Output (DE_OUT)

The MAX9248/MAX9250 deserialize video and control data at different times. Control data is deserialized during the video blanking time. DE_OUT high indicates that video data is being deserialized and output on RGB_OUT[17:0]. DE_OUT low indicates that control data is being deserialized and output on CNTL_OUT[8:0]. When outputs are not being updated, the last data received is latched on the outputs. Figure 18 shows the DE_OUT timing.

Power-Supply Circuits and Bypassing

There are separate on-chip power domains for digital circuits and LVTTL/LVCMOS inputs (VCC supply and GND), outputs (VCCO supply and VCCOGND), PLL (VCCPLL supply and PLLGND), and the LVDS input (VCCLVDS supply and LVDSGND). The grounds are isolated by diode connections. Bypass each VCC, VCCO,

VCCPLL, and VCCLVDS pin with high-frequency, sur-face-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin. The outputs are powered from Vcco, which accepts a 1.71 V to 3.6 V supply, allowing direct interface to inputs with 1.8 V to 3.3 V logic levels.

Cables and Connectors

Interconnect for LVDS typically has a differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.
Twisted-pair and shielded twisted-pair cables offer superior signal quality compared to ribbon cable and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver.

Board Layout

Separate the LVTTL/LVCMOS outputs and LVDS inputs to prevent crosstalk. A four-layer PCB with separate layers for power, ground, and signals is recommended.

ESD Protection
The MAX9248/MAX9250 ESD tolerance is rated for Human Body Model, Machine Model, IEC 61000-4-2 and ISO 10605. The ISO 10605 and IEC 61000-4-2 standards

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Figure 19. Human Body ESD Test Circuit

Figure 21. ISO 10605 Contact Discharge ESD Test Circuit
specify ESD tolerance for electronic systems. All LVDS inputs on the MAX9248/MAX9250 meet ISO 10605 ESD protection at $\pm 30 \mathrm{kV}$ Air-Gap Discharge and $\pm 10 \mathrm{kV}$ Contact Discharge and IEC 61000-4-2 ESD protection at $\pm 15 \mathrm{kV}$ Air-Gap Discharge and $\pm 10 \mathrm{kV}$ Contact Discharge. All other pins meet the Human Body Model ESD tolerance of $\pm 2 \mathrm{kV}$. The Human Body Model discharge components are $\mathrm{CS}_{\mathrm{S}}=100 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=1.5 \mathrm{k} \Omega$ (Figure 19). The IEC 61000-4-2 discharge components are $C s=150 p F$ and $R_{D}=330 \Omega$ (see Figure 20). The ISO 10605 discharge components are $\mathrm{Cs}=330 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=$ $2 k \Omega$ (Figure 21). The Machine Model discharge components are $C s=200 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=0 \Omega$ (Figure 22).

Chip Information

PROCESS: CMOS

Figure 20. IEC 61000-4-2 Contact Discharge ESD Test Circuit

Figure 22. Machine Model ESD Test Circuit
Pin Configuration

TOP VIEW

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
48 LQFP	C48+3	$\underline{\mathbf{2 1 - 0 0 5 4}}$

27-Bit, 2.5MHz to 42MHz
 DC-Balanced LVDS Deserializers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	-	Initial release	-
1	$8 / 06$	-	-
2	$5 / 08$	Replaced TQFP and TQFN packages with LQFP package, changed temperature limits for $+105^{\circ} \mathrm{C}$ part, and added Machines Model ESD text and diagram.	$1-5,7,16-19$

